Effects of Co3O4 nanocatalyst morphology on CO oxidation: Synthesis process map and catalytic activity
نویسندگان
چکیده
منابع مشابه
Ultrathin Co3O4 nanowires with high catalytic oxidation of CO.
Ultrathin Co(3)O(4) nanostructures with high catalytic oxidation of CO were synthesized by heating cobalt foils under atmospheric conditions. The Co(3)O(4) nanostructures were selectively exposing (111) planes composed of plenty of Co(3+) cations. We observed ultrahigh catalytic oxidation of CO in Co(3)O(4) nanowires with about 3 nm diameter.
متن کاملcomparison of catalytic activity of heteropoly compounds in the synthesis of bis(indolyl)alkanes.
heteropoly acids (hpa) and their salts have advantages as catalysts which make them both economically and environmentally attractive, strong br?nsted acidity, exhibiting fast reversible multi-electron redox transformations under rather mild conditions, very high solubility in polar solvents, fairly high thermal stability in the solid states, and efficient oxidizing ability, so that they are imp...
15 صفحه اولEnhancing Catalytic CO Oxidation over Co3O4 Nanowires by Substituting Co with Cu
Co3O4 is an attractive earth-abundant catalyst for CO oxidation, and its high catalytic activity has been attributed to Co cations surrounded by Co ions. Hence, the majority of efforts for enhancing the activity of Co3O4 have been focused on exposing more Co cations on the surface. Herein, we enhance the catalytic activity of Co3O4 by replacing the Co ions in the lattice with Cu. Polycrystallin...
متن کاملSynthesis, Structure and Catalytic Performance of N4-Macrocycles of Fe III and Co II for Oxidation of Hydroquinone
Macrocycles and p-benzoquinones (p-BQ) have been generally connected as potential co-synergist redox models in aerobic oxidation. To get insight for the synergist oxidation of hydroquinones (H2Q), thus, we synthesized and characterized dibenzotetraaza [14]annulene type macrocycles of FeIII and CoII metal ions and described by utilizing different examinations inc...
متن کاملSynthesis of La1-xSrxAlO3 Perovskites by Reverse Strike Co-Precipitation Method and Its Soot Oxidation Activity
La1-xSrxAlO3 (x=0 to 0.4) perovskite materials were synthesized by the reverse strike co-precipitation method and their soot oxidation activity was evaluated. All the catalysts synthesized were characterized using XRD, BET specific surface area, FESEM and XPS techniques. As analyzed by XRD, La1-xSrxAlO3 <...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Chinese Journal of Catalysis
سال: 2016
ISSN: 1872-2067
DOI: 10.1016/s1872-2067(16)62460-9